Perfect Domains

<u>1. Two Movement Puzzles:</u> In this paper, I address two issues. First, the distribution of syntactic movement, as opposed to long-distance agreement without movement. Second, the question of perspective: whether movement is driven by the element that moves (*push-movement*; term from van Riemsdijk, 1997), or by the landing-site or some element adjacent to it (*pull-movement*).

The 1990's saw a shift from push-movement to pull-movement as the prevalent perspective in generative syntax. However, recent work shows that allowing exclusively for pull-movement is problematic (e.g., van Craenenbroeck, 2006; Platzack, 1996; van Riemsdijk, 1997). Consider wh-movement out of embedded declaratives, as in (1): we know that *who* moves through the embedded SpecCP; but why does it move out of the embedded clause in the first place? Claiming that *who* moves out so it can check the matrix Q-feature amounts to computational look-ahead. Positing an active feature on the embedded C⁰ runs into immediate problems – how does this feature not crash the derivation of (2), where it is unchecked? Saying that the "right kind" of C⁰ is chosen in each case simply relegates the aforementioned look-ahead problem to the numeration.

In (3), I propose a novel approach to syntactic movement. As a first example, consider this: if all the features on a given head X^0 have been checked, then XP will constitute a perfect domain if and only if there are no unchecked features within X^0 's complement. Therefore, an immediate corollary of (3b) is *Expel*, as in (4). Another consequence is that movement is never a feature-checking mechanism. The only way a feature *F* on some head H⁰ can ever be checked is by entering into an agreement relation with some c-commanded Z^0 , which shares the *F* feature.

<u>2. General Patterns</u>: Let Z^0 be a head with a syntactically active feature *F*. Suppose that a higher XP has had its last remaining feature(s) checked. *Expel* mandates that ZP would have to be relocated into SpecXP, as in (5). Now suppose a head H⁰ is merged that carries a matching instance of *F*. The agreement relation established between H⁰ and Z⁰ would then be quite local, as in (6).

If, on the other hand, XP has unchecked features, (3b) dictates that ZP must stay in place. The agreement relation between H^0 and Z^0 will then be relatively distant, as in (7).

Finally, suppose there are no maximal projections at all between H^0 and ZP, as in (8). Assuming this is the root of the derivation, the only maximal projection dominating ZP is HP, which cannot be turned into a perfect domain (because of *F* on H^0). Hence, (3b) bars movement of ZP to SpecHP.

Head-movement of Z^0 to H^0 , however, would remove the unchecked instance of *F* from within ZP. (3b) thus predicts that such head-movement must occur. Notice, this is the only configuration examined so far in which Z^0 -to- H^0 head-movement would not violate the HMC (Travis, 1984).

<u>3. Predictions</u>: As shown above, the degree of locality involved in a feature-checking relation will be determined by the existence of unchecked features between the relevant heads. Consider the derivation of a clause anchored by an unaccusative verb, in (10).

If T^0 is equipped with *nom* (nominative), then (10b) represents a configuration like (7) with respect to *nom/Case* (where the "intervening" feature *G* is *tense*), and therefore, long-distance agreement between T^0 and the DP will arise, canceling the *nom/Case* features (see (11)).

This configuration, in turn, represents a maximal locality configuration, as in (8), with respect to tense – yielding V⁰-to-T⁰ head-movement. The result is an Irish-type clausal structure (12).

If, however, *nom* is on C⁰ and not T⁰ (as argued for English/French by Pesetsky and Torrego, 2001, 2004), there is no way to check *Case* on the DP in (10b). On the other hand, V⁰-to-T⁰ head-movement due to *tense* will still apply (as above), yielding (13). TP can now be made into a perfect domain, by *Expel* of the DP, as in (14) (giving rise to the EPP-effect). *Case* on the DP will be checked at the next step, upon merger of C⁰ (see below for an example). We thus account for the distribution of syntactic movement vs. long-distance agreement in this case.

Consider a modification of (14), where DP is a wh-element. Suppose declarative C^0 is merged, as in (15). CP can now become a perfect domain, by *Expel* of the wh-DP, as in (16) (*Expel* would not be necessary, and hence it would be disallowed, if the DP did not have a wh-feature). We thus derive movement out of declarative CPs, without postulating an ad-hoc "driving force" on C^0 .

- (1) Who did Mary think arrived?
- (2) Mary thinks (that) John arrived.
- (3) a. *Perfect Domain*: Any maximal projection XP, in which all unchecked features (if any) are contained within SpecXP.
 - b. The *Perfect Domains Hypothesis*: Movement takes place **if and only if** it will turn an XP into a perfect domain.
- (4) Corollary 1 (*Expel*): Upon the last active feature(s) of X⁰ being checked, any active features dominated by X' will be relocated to the edge (specifier) of XP.
- (5) $[_{XP} [_{ZP} Z^{0}_{[F]}]_{1} [_{X'} X^{0} t_{1}]]$
- (6) [$H^{0}_{[F]}$ [$_{XP}$ [$_{ZP}$ $Z^{0}_{[F]}$]] [$_{X'}$ X^{0} t_{1}]]
- (7) [$H^{0}_{[F]}$ [$_{XP} X^{0}_{[G \neq F]}$ [$_{ZP} Z^{0}_{[F]}$]]]
- (8) [$H^{0}_{[F]}$ [$_{ZP}Z^{0}_{[F]}$]]
- (9) Corollary 2 (*Head-Expel*): In a configuration such as (8), head-movement of Z^0 to H^0 is obligatory.
- (10) (\oplus denotes *Merge*) a. $V^0 \Big\langle {tense} \\ \theta - theme \Big\rangle \oplus DP \langle Case \rangle \longrightarrow [_{VP} V^0 \langle tense \rangle DP \langle Case \rangle]$ b. $T^0 \Big\langle {tense} \\ (nom) \Big\rangle \oplus [_{VP} V \langle tense \rangle DP \langle Case \rangle] \longrightarrow [_{TP} T^0 \Big\langle {tense} \\ (nom) \Big\rangle [_{VP} V \langle tense \rangle DP \langle Case \rangle]]$
- (11) $[_{TP} T^0 \langle tense \rangle [_{VP} V \langle tense \rangle DP]]$
- (12) $[_{TP} T^0 + V^0_1 [_{VP} t_1 DP]]$
- (13) $[_{\text{TP}} \text{T}^0 + \text{V}^0_1 [_{\text{VP}} \text{t}_1 \text{DP} \langle Case \rangle]]$
- (14) $[_{TP} DP_2 \langle Case \rangle T^0 + V^0_1 [_{VP} t_1 t_2]]$

(15)
$$C^0(nom) \oplus [_{TP} DP_2 \langle ^{Case}_{wh} \rangle T^0 + V^0_1 [_{VP} t_1 t_2]] \longrightarrow [_{CP} C^0 [_{TP} DP_2 \langle wh \rangle T^0 + V^0_1 [_{VP} t_1 t_2]]]$$

(16)
$$[_{CP} DP_2 \langle wh \rangle C^0 [_{TP} t_2 T^0 + V^0_1 [_{VP} t_1 t_2]]]$$

Selected References

- van Craenenbroeck, Jeroen. 2006. Transitivity failures in the left periphery and foot-driven movement operations. In *Linguistics in the netherland 2006*, ed. Jeroen van de Weijer and Bettelou Los, 52–64. Amsterdam: John Benjamins.
- Pesetsky, David, and Esther Torrego. 2001. T-to-C movement: Causes and consequences. In *Ken Hale: A life in language*, ed. Michael Kenstowicz, 355–426. Cambridge, MA: MIT Press.
- Pesetsky, David, and Esther Torrego. 2004. Tense, Case, and the nature of syntactic categories. In *The syntax of time*, ed. Jacqueline Gueron and Jacqueline Lecarme, 495–537. Cambridge, MA: MIT Press.
- Platzack, Christer. 1996. Germanic Verb Second languages Attract vs. Repel: On optionality, A-bar movement and the symmetrical/asymmetrical Verb Second hypothesis. In *Deutsch typologisch*, ed. Ewald Lang and Gisela Zifonun, 92–120. Berlin: Walter de Gruyter.
- van Riemsdijk, Henk. 1997. Push chains and drag chains: Complex predicate split in Dutch. In *Scrambling*, ed. Shigeo Tonoike, 7–33. Tokyo: Kurosio Publishers.