Expanding the Unicode Repertoire
Unencoded Scripts of Africa and Asia

Deborah Anderson, SEI, Department of Linguistics, UC Berkeley
Anshuman Pandey, Department of History, University of Michigan

IUC 38 • November 5, 2014
 Already Encoded Scripts (12)

► “Modern” use (8)
 ► Bamum/Bamum Supplement
 ► Bassa Vah
 ► Ethiopic/Ethiopic Supplement and Extensions
 ► Mende Kikakui
 ► N’Ko
 ► Osmanya
 ► Tifiangh
 ► Vai

► Historic use (3)
 ► Egyptian Hieroglyphs
 ► Meroitic Cursive
 ► Meroitic Hieroglyphs

► Liturgical use (1)
 ► Coptic

Note: Scripts in **bold italic** had assistance from SEI

Bassa Vah (Unicode 7.0)
Scripts of Africa
Unencoded scripts (historical) - possible candidates for encoding

- Additions to Egyptian Hieroglyphs (Ptolemaic) - over 7K characters

- Hieratic?

- Demotic?

- Numidian?

Source: Chicago Demotic Dictionary
Unencoded scripts (modern or near-modern) - good candidates (13)

- Adlam * (1978)
- Bagam (1910)
- Beria (1980s)
- Bete (1956)
- Borama (Gadabuursi) (1933)
- Garay (Wolof) (1961)
- Hausa Raina Kama (1990s)
- Kaddare (1952)
- Kpelle (1930s)
- Loma (1930s)
- Mandombe (1978)

- Mwangwe (1979)
- Nwagu Aneke Igbo (1960s)
- Oberi Okaine (1927)

* Approved by UTC
Unencoded scripts - not currently good candidates for encoding (21)

- Aka Umuagbara Igbo (1993)
- Aladura Holy alphabet (1927)
- Bassa (1836)
- Esan oracle rainbow (1996)
- Fula (2 scripts) (1958/1963)
- Kii (2006)
- Kru alphabet (1972)
- Luo (2 scripts)

- Masaba (1930)
- Ndebe Igbo (2009)
- New Nubian (2005)
- Nubian Kenzi (1993)
- Oromo (1956)
- Soni (2001)
- Wolof Saalliw wi (2002)
- Yoruba FaYe (2007)
- Yoruba holy script (undeciphered) (20c)
Unencoded scripts - non-phonetic graphic symbols (10)

- Adinkra
- Akan
- Bogolanfini
- Cenda
- Dogon cosmograms
- Gicandi
- Hu-ronko
- Kongo cosmograms
- Nsibidi
- Poro symbols

Adinkra

Kongo cosmograms

Nsibidi
Poster child for modern script: N’Ko

- Created in 1949 by Solomane Kante
- Used for Mande languages (18-20m speakers)
- Used in religious materials, newspapers, books, Internet

N’Ko
Poster child for modern script: N’Ko

Key traits:

- Many active users (used in 10 countries)
- Significant written text materials
- Taught in schools (e.g., Guinea and Mali)
- Funding support
- Tireless proponent: M. Doumbouya
- Has iPhone app, but still some issues in browsers and other software
Case study: Adlam

- Created in 1980s by A. and I. Barry
- Alphabetic script used for Fulani language (Pular / Fulfulde) spoken by 40m people across Africa
Case study: Adlam

- Used in 9 countries across West Africa
- Learning materials and monthly periodical are published in the script
Case study: Adlam

- Unicode Technical Committee, Sunnyvale, CA
 October 27 2014
Case study: Adlam

- Unicode Technical Committee, Sunnyvale, CA
- October 27 2014
Case study: Mandombe

- Created in 1978
- Used in Democratic Republic of Congo and surrounding countries for Bantu languages of the Congo
- Connected to Kimbanguist Church
- Copyright issue affecting its encoding
Case study: Garay (Wolof)

- Developed in 1961
- Creator (Assane Faye) still alive
- Used for Wolof (4 million speakers in West Africa)
- Taught in classes
Case study: Oberi Okaime (Church “freely given”)

- Created ca. 1927, fl. 1930-1980
- Used for Medefaidrin language, a “spirit language” spoken by a Christian group in SE Nigeria
- Limited use today but linguists and community are interested in documenting and preserving it
Case study: Loma

- Created in 1930s
- Used in 1930s and 1940s for Loma language, spoken in Guinea and Liberia by 195,000
- Scarce primary material, primarily personal correspondence or record-keeping
- Small group of interested users
Problems

- Difficult to get information on the scripts and their use
 - Fieldwork may be required

- Some scripts have scarce source material, so need to rely on secondary material
Problems

From standards committees’ perspective:

- Need to provide rationale for encoding the script:
 - Is there an interested group of scholars or users?
 - Are there ongoing digitization projects?

- Need to show (newer) scripts will take hold, not be ephemeral or limited to very few people
Other challenges

- Many of the unencoded scripts are in remote areas in West Africa; may be difficult to get a timely response to questions
- Most of the scripts have no official government support
Approaches to gather information

- Rely on users in diaspora for information
- Use social media to locate members of the community and gauge interest
New possibilities for encoded scripts

- Growth of mobile phones may encourage use of local scripts (once encoded)
New possibilities for encoded scripts

- Wikimedia Incubators as a way to spawn interest in local scripts
Summary

- Egyptian hieroglyphs (Ptolemaic): need research
- Various modern African scripts still need:
 - adequate text materials
 - information on use of characters
 - verification script is used today (and stable)
 - rationale for encoding the script
Acknowledgements

- Andrij Rovenchak, author of *African Writing Systems of the Modern Age* (with J. Glavy)
- Chuck Riley, Catalog Librarian for African Languages, Yale University Library
- Prof. Konrad Tuchscherer, St. John’s University
- Don Osborn, Bisharat

Bamum
Scripts of Asia
Scripts of (Non-Ideographic) Asia
South Asia: already encoded (30)

- Bengali
- *Brahmi*
- Gujarati
- Grantha
- Gurmukhi
- *Kaithi*
- Kharoshthi
- Kannada
- *Khojki*
- Khudawadi
- *Lepcha*
- Limbu
- *Mahajani*
- Malayalam
- *Meetei Mayek*
- *Modi*
- Mro
- *Ol Chiki*
- Oriya
- *Saurashtra*
- Sharada
- *Siddham*
- Sinhala
- *Sora Sompeng*
- Syloti Nagri
- *Takri*
- Telugu
- Thaana
- *Tirhuta*
- *Warang Citi*

Note: Scripts in *bold italic* had assistance from SEI
South Asia: unencoded (23)

- Ahom *
- Bhaiksuki *
- Balti ‘A’
- Balti ‘B’
- Bhujinmol
- Chalukya
- Chola
- Dhives Akuru
- Dogra
- Gondi
- Gunjala Gondi
- India Valley script
- Kadamba
- Landa
- Multani *
- Nandinagari
- Newa *
- Pallava
- Ranjana (Landzya)
- Satavahana
- ‘Shankha lipi’ (shell script)
- Sindhi scripts
- Tulu (Tigalari)

* Approved by UTC
South Asia: unencoded - new scripts (15)

- Bagada
- Coorgi Cox
- Dhimal
- Jenticha
- Khambu Rai
- Gurung (Khema & Phri)
- Kirat Rai
- Magar Akkha
- Tangsa (2 scripts)
- Tani Lipi
- Tikamuli
- Tolong Siki
- Zou
Southeast Asia: already encoded (22)

- Balinese
- Batak
- Buginese
- Buhid
- Cham
- Hanunoo
- Javanese
- Kayah Li
- Khmer
- Lao
- Myanmar

- New Tai Lue
- Pahawh Hmong
- Pau Cin Hau
- Rejang
- Sundanese
- Tagalog
- Tagbanwa
- Tai Le
- Tai Tham
- Tai Viet
- Thai

Note: Scripts in **bold italic** had assistance from SEI
Southeast Asia: unencoded (9)

- Eskaya
- Gangga Malayu (cipher?)
- Kawi
- Leke
- Makassrese Bird Script
- Pau Cin Hau Syllabary
- Pyu
- Rakhawunna
- Rohingya
Central Asia: already encoded (5)

- Manichaean
- Mongolian
- Old Turkic
- Phags-pa
- Tibetan

Note: Scripts in bold italic had assistance from SEI
Central Asia: unencoded (8)

- Khatt-i Baburi (cipher?)
- Khotanese (Turkestani)
- Marchen *
- Old Uyghur
- Sogdian
- Soyombo
- Tocharian
- Zanabazar Square *

* Approved by UTC
Number Systems: unencoded

- North Indian ‘Letter Numbers’
- South Indian ‘Letter Numbers’
- Siyaq Numbers
 - Arabic (Diwani)
 - Ottoman
 - Persian
 - North Indian
 - South Indian (Dakkhani)
Recent Success: Siddham
Recent Success: Siddham

- East Asia, since 9th c. CE, predominantly in Japan
- Brahmi-based, left to right
- Liturgical: Buddhist texts in Sanskrit
- Challenges for encoding:
 - Alphasyllabic script, but is analyzed from an ideographic perspective
 - Features have different semantics in Japanese context
 - Meeting in Tokyo, November 2013 with experts
Recent Success: Siddham
Recent Success: Newa
Recent Success: Newa

- Nepal, 10th century to 20th century
- Brahmi-based
- Used for writing Sanskrit, Maithili, Nepalese, Nepal Bhasa (Newar)
- +100,000 records (manuscripts, inscriptions, books)
- Challenges for encoding:
 - Historical script being revived and reformed
 - Ethno-political issues
 - Adaption of Brahmi-based script for writing Tibeto-Burman
Recent Success: Newa

- First proposed in 2012
- Wikimedia funded trip to Kathmandu to meet with user community
- Consensus developed during meeting and remotely after
- Approved for encoding at UTC October 2014
Challenges: Bhujinmol
Challenges: Bhujinmol

- Nepal, parts of northern India, 12-17th centuries CE
- Brahmi-based: structure identical to Newa script
- Glyph repertoire nearly identical to Newa
- Distinguished by head-stroke (*bhujinmol* = “fly-headed”)
- Challenges for encoding:
 - Unify as style of Newa or encode as independent script for plain text?
Unencoded: Soyombo
Unencoded: Soyombo

- Liturgical script developed by Zanabazar, 17th c. CE
- Brahmi-based, modeled upon Ranjana and Tibetan
- Used for writing Sanskrit, Tibetan, Mongolian
- Writing system has language-specific features
- Challenges for encoding:
 - Access to user community
 - Access to sources
Unencoded: Khotanese
Unencoded: Khotanese

- Western China, 4th-11th c. CE
- Brahmi-based script, left to right
- Used for Gandhari, Khotan
- Challenges for encoding:
 - Unify with Brahmi?
 - Access to sources
Unencoded: Tocharian
Unencoded: Tocharian

- Western China, 9th century
- Brahmi-based script, left to right
- Used for writing Sanskrit, Tocharian
- Buddhist and Manichaean texts, administrative documents,
- Challenges for encoding:
 - Unification with Brahmi?
 - Further analysis of sources
Unencoded: Sogdian
Unencoded: Sogdian

- Iran to China, 2nd-13th c. CE
- Abjad, alphabet; right to left, derived from Syriac
- Used for writing Sogdian
- Religious texts of Buddhism, Manichaeanism, Christianity
- Challenges for encoding:
 - Unification with Syriac?
 - Analysis of logograms
 - Further analysis of sources

“I'd rather be a dog’s or a pig’s wife than yours” - Sogdian lady writing to her husband, 314 CE
(source: International Dunhuang Project, British Library)
Unencoded: Old Uyghur
Unencoded: Old Uyghur

- Used in western China, predominantly in Xinjiang region, 7th-19th c. CE
- Abjad, alphabet; vertical orientation
- Derived from Sogdian, basis for Mongolian
- Challenges for encoding:
 - Accommodating sub-regional styles and orthographies
 - Access to sources and user community
 - Political sensitivities
Unencoded: Siyaq Numbers
Unencoded: Siyaq Numbers

- Specialized subset of Arabic used for numerical notation
- Highly stylized abbreviations for Arabic names of numbers
- Middle East to South Asia
- Different styles, same underlying principle
- Challenges for encoding:
 - Model for encoding
 - Fractions, unit marks
 - How much to unify?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>641</td>
<td></td>
</tr>
<tr>
<td></td>
<td>168,875</td>
</tr>
<tr>
<td></td>
<td>347,592</td>
</tr>
<tr>
<td></td>
<td>465,890</td>
</tr>
<tr>
<td></td>
<td>526,346</td>
</tr>
</tbody>
</table>
Unencoded: Pyu
Unencoded: Pyu

- Myanmar, 5th c. CE
- Brahmi-based, left to right
- Used primarily for inscriptions: gold leaf, terracotta, stone
- Two styles: Pyu Pali & Pyu Tircul
- Challenges for encoding:
 - Could be unified with the Pallava script
 - Requires encoding the Pallava script
 - Access to and analysis of sources
Unencoded: Eskaya
Unencoded: Eskaya

- Created by Mariano Datahan, early 20th c.
- Syllabary, 1,065 letters
- Used for writing Eskayan, an artificial language used on Bohol
- Challenges for encoding:
 - Determining suitability for encoding
 - Investigation of sources
 - Extent of usage
 - Current status
Filling in the Gaps

- Bengali: weights and measures
- Buginese: Ende, Bimanese extensions
- Devanagari: invocation signs, vowel signs, Vedic extensions
- Gujarati: Arabic transliteration marks
- Khojki: additional letters, Arabic transliteration marks
- Malayalam: weights and measures
- Mongolian: head marks
- Oriya: invocation signs, fraction signs, ‘letter-numbers’
- Rejang: Kerinci, Minangkabau, Lampung, Angka Bejagung numeral extensions
- Sharada: various signs, Vedic tone marks
- Takri: disunification of some regional scripts
- Tirhuta: fractions, currency, weights, measures marks
Expanding the Repertoire

Unencoded scripts: +102
- Africa: 47
- Asia: +55

Challenges
- +8 years: from preliminary research for proposal to publication in Unicode
- New universal shaping engine will speed up implementation
- Access to user community, sources, and funding affect encoding projects
Script Encoding Initiative at UC Berkeley

Script Encoding Initiative
Department of Linguistics
University of California, Berkeley

What is the Script Encoding Initiative?

The Script Encoding Initiative (SEI), established in the UC Berkeley Department of Linguistics in April 2002, is a project devoted to the preparation of formal proposals for the encoding of scripts and script elements not yet currently supported in Unicode (ISO/IEC 10646).

Unicode is the universal computing standard specifying the representation of text in all modern software. To date, Unicode has largely focused on the major modern scripts, particularly those scripts most widely used in business. Some minority and historic scripts have already been encoded, as well as historic characters of the major modern scripts. Over 80 scripts remain to be encoded. Minority scripts are still used in parts of South and Southeast Asia, Africa, and the Middle East. Unencoded scripts include Kpele, Mende, Loma, Panawh Hmong, and Warang Chiti. Scripts of historical significance include Kitan, Old Permic, Jurchen, and Tangut. Even for major modern scripts there are many difficult historical issues remaining to be addressed, for example the encoding model for Chinese (written continuously for nearly 3,000 years) is still being debated.

Because proposals for the encoding of minority and historical scripts often entail significant research, and their user communities have little economic or political voice, such script proposals have not been submitted to the Unicode Technical Committee (UTC) in any regular manner. It has been estimated that at the current slow pace of encoding, many scripts will still be unencoded.

http://linguistics.berkeley.edu/sei
Email: dwanders@berkeley.edu
“One standard to rule them all”